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INTERNAL HEAT TRANSFER AUGMENTATION
IN A CHANNEL USING AN ALTERNATE
SET OF POROUS CAVITY-BLOCK OBSTACLES

P. C. Huang and K. Vafai
DepartmentofMechanicalEngineering, Ohio State University,
Columbus, Ohio. USA

A numeriea! investigation for forced convection in a constant-temperaJure parallel pkue
channel wilh porous cavity and block alternately emplaced on lhe bottom plaJe is presented
in this work. The Brinkman-Forchheimer-extended Darcy mode~ whil:h accounts for the
effects of impermeable boundary and inertia, is used to characterize the flow field inside the
porous region. Solutions of Ihe coupled governing equations are carri£d mu through the
stream function-vorticity analysis. The characteristics of fluid fluw and forced convection
heat transfer have been obtained by the examinations ofvarious governing parameters, sueh
as the Reynolds number, Darcy number, inertial parameter, Prandtl number, and two
geometric parameters. Several interesting phenomena sueh as the heal transfer augmen/IJ­
tion in the channel were presented and discussed. The results of this investigation indicate
that the size of recircukuion caused by porous block will have a profoand effed on the fluw
and heal transfer characteristics inside the interblock porous cavity.

The problem of convective heat transfer and fluid flow in horizontal ducts
with fins and ribs has been well studied and documented because of the augmenta­
tion effect on the heat transfer process. The similar problem with a porous
structure has also gained extensive attention due to the wide range of applications,
which include, but are not restricted to, areas such as thermal insulation, crude oil
extraction, solidification of castings, nuclear waste repositories, and solid matrix
heat exchangers.

Shah and London [1] provided a comprehensive survey of literature pertinent
to the heat transfer performance studies within a channel without a porous
medium, while Koh and Colony [2] numerically investigated the cooling effective­
ness for a porous material in a coolant passage. Koh and Stevens [3] performed an
experimental study for the same problem. They showed for the case with fixed
allowable wall temperature that the heat flux at the channel wall can be increased
by over 3 times by using high-conductivity porous material in the channel. Rohsenow
and Hartnett [4] presented the constant Nusselt number for the fully developed
region in a porous medium bounded by two parallel plates, based on Darcy's flow
model. To account for the effect of a solid boundary, Kaviany [5] performed a
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520 P. C. HUANG AND K. VAFAI

NOMENCLATURE

A dimensionlessgeometric parameter r general diffusive coefficient, Eq. (15)
(=W·IH·) oX x direction distance between two

B dimensionless geometric parameter adjacent grid points
(= D· IW·) oy y direction distance between two

D spacingbetween cavities or adjacent grid points
blocks, m tox x direction width of the control

Da Darcy number (= KIR') volume
F function used in expressing toy y direction width of the control

inertia terms volume
h convective heat transfer coefficient, E porosity of the porous medium

W/m'K 0 dimensionless temperature
H height of the porous cavities or [= (T - To)/(Tw - To)1

blocks, m A inertial pararneter I = FREI[K)
k thermal conductivity, W1m K ,.. dynamic viscosity, kglms
K permeability of the porous P kinematic viscosity, m'ls

medium.rn? € vorticity
/, length of plate upstream from the <t> transported property; general

cavity-block array, m dependent variable
/, length of plate downstream from

'"
streamfunction

the cavity-block array, m [a,bl larger of a and b
L length of the parallel plate channel,

as shown in Figure I, m
N number of mixed porous cavity- Superscript

block structures
Nu Nusselt number I - hxlkf)

dimensionless quantity
Pe Peeler number (= u" RIex)
Pr Prandtl number (= pi ex)
R height of channel

Subscripts
Re Reynolds number (- u"Rlp)
T temperature, K
u x component velocity, mls av average
v y component velocity, mls eff effective
v velocity vector, mls f fluid
W width of the porous block, m I interface
x horizontal coordinate, m m bulk mean
y verticalcoordinate,m p porous
ex thermal diffusivity, m'ls x local
ucff effective thermal diffusivity w wall

(= kerrlPrcp,r), m'ls 0 condition at inlet

numerical study of laminar flow through a porous medium bounded by isothermal
plates based on the Brinkman-extended Darcy model for constant porosity.
Poulikakos and Renken [6J have examined the effect of flow inertia, variable
porosity, and a solid boundary on forced convection in a duct filled with porous
media.

An important problem related to forced convection through a porous medium
is flow and heat transfer over a porous/fluid composite system. This involves the
study of fluid flow above and through a porous medium. Under this circumstance,
the porous/fluid interfacial region represents a zone of discontinuity of material
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HEAT TRANSFER AUGMENTATION IN A CHANNEL S2I

properties. It has a direct influence on the fluid flow and heat transfer, especially
when there is a large gradient of physical properties such as permeability, porosity,
and thermal conductivity, across the interface. This type of composite system is
encountered in many cases of practical interest, such as nuclear waste repositories,
crude oil extraction, and iron blast furnaces. There exists an extensive work [7],
which describes coupled fluid motions satisfying the Navier-Stokes equations in the
free fluid, empirical, or semiempirical set of equations (typically, Darcy's law) in
the permeable material, and matching conditions at the interfacial boundaries.

Beavers and Joseph [8]experimentally reported the mass efflux of a Poiseuille
flow over a naturally permeable boundary based on Darcy's law. They found that
when a viscous fluid passes a porous solid, tangential stress entrains the fluid below
the interface with a velocity that is slightly greater than that of the fluid in the bulk
of the porous medium. Both experimental and theoretical investigations for validat­
ing such slip-flow interface conditions were done by Taylor [9] and Richardson [iO].
Levy and Sanchez-Palencia [11] found that when the typical length scale of the
external flow is large compared with the microscopic scale, the velocity field
transition at the interface from the porous media to the free-fluid region occurs
over a thin region of the order of the pore scale. They also showed that, depending
on the direction of the pressure gradient in the porous medium, two different kinds
of phenomena may appear at the interface.

Recently, Vafai and Thiyagaraja [12] analytically studied a general class of
problems involving interactions on flow and heat transfer for three basic types of
interface zones. They obtained analytical solutions for the velocity and temperature
distributions as well as analytical expressions for the Nusselt numbers for all three
classes of interface composites investigated in their work. More relevant to the
present study is the work of Poulikakos and Kazmierczak [13]. They analyzed fully
developed forced convection in a channel partially filled with a porous matrix and
showed that a critical thickness exists at which the value of Nusselt number reaches
a minimum, based on the Brinkman-extended Darcy model.

Analysis of internal forced convection in a porous/fluid composite system is
significantly more complicated due to the complex geometric configuration of these
types of systems. In this study, a numerical investigation has been performed for a
channel, within which multiple porous cavity and block structures are alternately
emplaced. The analysis is based on the use of the Brinkman-Forchheimer-extended
Darcy model in the porous medium and the Navier-Stokes equation in the fluid
region. The porous medium provides a penetrating random structure, which
augments the mixing in the fluid and profoundly changes the heat transfer
characteristics within the channel. Therefore, the present study is aimed at a
fundamental investigation of changes in the flow pattern and heat transfer perfor­
mance due to the existence of porous cavity-block obstacles. Effects of various
governing physical parameters are also considered in order to investigate their
influence on the flow and thermal characteristics within the channel.

THEORY

The problem consists of flow between parallel plates with a multiple porous
cavity-block structure on the bottom boundary, as depicted in Figure la. The fluid
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522 P. C. HUANG AND K. VAFAI

III Porous medium
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Figure I. (a) Schematic diagram of force convection in a parallel plate channel with alternate
porous cavity-block obstacles on the bottom plate. (b) Local integration cell.

enters the channel at ambient temperature To. It is assumed that the hydrodynamic
entry length is small, resulting in a parabolic velocity profile at the entry to the
channel. Alternatively, this parabolic velocity profile can also occur for a regular
channel entrance region prior to the region of multiple porous cavity-block
structures. The plate walls are maintained at constant temperature Tw ' the channel
width and total length are Rand L, and the width and height of the rectangular
porous cavities and blocks are Hand W, respectively. The distance between cavity
and block is designated as D, and the length of the plate upstream and down­
stream from the porous cavity-blocks are 11 and 12 , respectively The flow is
assumed to be steady, incompressible, and two-dimensional. In addition, the
thermophysical properties of the fluid and the porous matrix are assumed to be
constant, and the porous medium is considered homogeneous, isotropic, nonde­
formable, and in local thermodynamic equilibrium with the fluid. In this study, the
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HEAT TRANSFER AUGMENTATION IN A CHANNEL 523

Brinkman-Forchheimer-extended Darcy model, which accounts for the effects of
flow inertia as well as friction caused by macroscopic shear [14, 15], is used to
describe the flow inside the porous regions. This work is based on the application
of an efficient method combining the two sets of governing equations for the fluid
and the porous regions into one set of conservation equations satisfying the
matching conditions at the porous/fluid interface. The resulting momentum and
energy equations in terms of dimensionless variables are as follows:

al/J" ago al/J" ago 1
---- - ---- = -V~" + S"
ay" ax" ax" ay" Re

VZI/J" = _go

al/J" ao al/J" aO (1 )
ay" ax" - ax" ay" = V Pe VO

The nondimensional parameters in the fluid region are

(1)

(2)

(3)

S" = 0 (4)

and the nondimensional parameters in the porous region are

K
Da=­

RZ

FRe
A = Kl/z (5)

1 (a~"1 a~"I)S" = go - A~"lgo - A v"-- - u"--
ReDa ax ay"

where the nondimensional quantities are

x y u" v
x* =- y" =- u"=- v" =- Iv"1 = ';u"Z + v"z (7)

R R uav uav

I/J" = .z: g" = RI/J 0=
T- To

(8)
uavR v.: Tw - To

The source term S" in the porous region is composed of those terms contributing
to the vorticity generation due to the presence of the porous medium. In addition,
the above stream function and vorticity are defined as

al/J
u=-

ay
v=

al/J
ax

(9)

av au
g=---

ax ay
(10)
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524 P. C. HUANG AND K. VAFAI

lt should be noted that the variables v and T in the porous regions are both
volume-average quantities, as described by Vafai and Tien [14].

BOUNDARY CONDIT[ONS

Due to the elliptic nature of the conservation equations, the boundary
conditions for all field variables have to be specified along the entire boundary
enclosing the solution domain. At the inlet of the channel, the stream function
distribution is calculated from the specified inlet fluid velocity profile, that is, a
fully developed parabolic profile. At the outlet, the gradient of the stream function
in the axial direction is assumed to be zero; i.e., the streamlines are assumed to be
perpendicular to the exit plane of the channel. This boundary condition frequently
appears in the literature [16] and implies that the flow is almost fully developed at
the exit. Even though the fully developed flow may not be achieved at the exit of
the channel, this zero-gradient boundary condition offers sufficient flexibility for
the flow distribution. Furthermore, by choosing an extended computational do­
main, it was ensured that the outflow boundary conditions had no detectable effect
on the solution within the physical domain. This process is explained in more detail
below.

The vorticity boundary conditions are derived from the velocity distribution.
For the thermal boundary conditions, the fluid is assumed to have a uniform
temperature distribution at the inlet, while at the outlet the temperature gradient
along the flow direction is taken to be negligible, indicating that the convective
effects are taken to be more dominant than the diffusion of heat. Again, by
choosing an extended computational domain, it was ensured that the thermal
boundary conditions at the exit had no significant effect on the solution. For
closure, the matching conditions, which satisfy the continuity of longitudinal and
transverse velocities, normal and shear stresses, temperature, pressure, and heat
fluxes, are applied across the porous/fluid interfaces [17, 18]. In summary, the
boundary conditions can be described in the following dimensionless form.

1. At the entrance (x" = 0, 0 < y" < 1),

u" = 6y"(1 - yO) v" = 0 (
y"2 y"3)

.p" = 6 - --
2 3

g" = 6(1 - 2y")

2. At the exit (x" = L", 0 < y" < 1),

8=0

u" = 0

a.p"
-=0
ax"

a8
-=0
ax"
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HEAT TRANSFER AUGMENTATION IN A CHANNEL

3. Along the bottom plate,

0< x" < Ii

525

Ii + NW" + 2(N - 1)(W" + D") < x" < Ii + NW" + N(W" + 2D")

(l -In < x" < 1

(all at y" = 0) and on the cavity floor,

lj + 2(N - l)(W" + D") < x" < Ii + W" + 2(N - 1)(W" + D")

y" = -H"

the following boundary conditions are applied:

u" = 0 v" = 0 1/1" = 0

4. Along the upper plate (0 < x" < L", y" = 1),

u" = 0 u" = 0 1/1" = 1

5. Along the side walls of the cavities,

x" = Ii + 2(N - 1)(W" + D")

x" = Ii + W" + 2(N - 1)(W" + D") 0> y" > -H"

u" = 0 v" = 0 1/1" = 0

6. Along the porous/fluid interface,

uj = u~ vi = v;
avO avof p

/Lf ay" = /Leff ay" (
au' av' ) ( au' avo )

u« ay: + ax: = /Leff ay: + ax~
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526 P. C. HUANG AND K. VAFAI

The parameter N (= 1,2, ... ) is the number of mixed porous cavity-block
obstacles. Note that the variables in the above equations are defined as
follows:

L
L· =-

R

/
/• - ...!..1-

R

/
/• - .22 -

R

D
D· =-

R

ww· =-
R

From the above equations, boundary conditions, and geometry arrangement
of porous cavities and blocks, it is seen that the present problem is governed by six
dimensionless parameters. These are the Darcy, Reynolds, and Prandtl numbers,
inertia parameter, and geometric parameters A and B, where

w·
A=­

H·
D·

B=­w·
H

H· =-
R

Further insight into the porous cavity-block interactions on the fluid flow and heat
transfer processes can be obtained by observing the variation of the local heat
transfer rates on the channel wall. The local Nusselt number along the bottom
plate may be defined from the local heat transfer coefficient as

hR
Nu =- =

x k
f

keff(Tw - To) aO.1
kf(Tw - Tm) ay y'-o

where keff reverts to k, over regions with no porous substrate and Om = (Tm ­
To)/(Tw - To) is the dimensionless form of the bulk mean temperature Tm defined
by

(12)

The absolute value of the velocity proposed by Kelkard and Patankar [19] is used
here, so as to properly account for regions of recirculating flow. It should be noted
that conductivity of the fluid was chosen in the formulation of Nu. This choice
gives a more meaningful comparison for the heat flux at the channel between the
composite system and the case where there was no porous substrate. Therefore,
the heat transfer augmentation will be even larger for a porous medium that has a
larger thermal conductivity than that of the fluid.

NUMERICAL METHOD

The following is a general formulation for the diffusion-convection equation,
which can be applied to vorticity and temperature equations:

~(u<lJ) + ~(v<lJ) = ~(ra<lJ) + ~(ra<lJ) + Sq, (13)
axay ax ax ay ay
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HEAT TRANSFER AUGMENTATION IN A CHANNEL 527

Here, <Il represents either the temperature or vorticity function. The stream
function equation Eq. (2) is solved using the successive overrelaxation (SOR)
method. By using finite difference approximations, the governing equations can' be
reduced to a set of nonlinear algebraic equations that can be solved by an iteration'
scheme. Based on the nonuniform rectangular grid system, the finite difference'
form of the vorticity and temperature equations is derived by volume integration
over discrete cells surrounding the grid points, as shown in Figure lb. Calculations
were performed using the second upwind-differencing scheme for the convective
terms with central difference for the diffusive terms. This integration process
results in a discretized equation that can be put into the form

where

~Y ( [8Xe U e ]) (l5a)C=f-1+---0
E e 8x I' '

e e

~Y ( [8Xw
U

w
] ) (l5b)C =f - 1 + --- 0

w W SX
w

f
w

'

~x ( [8YnVn
] ) (I5c)C=f-1+---0

N n 8 I' 'Yn n

~x ( [8Y,V, ]) (l5d)c, = fS8ys 1 + T'O

b = S4> ~x ~Y (I5e)

and

Cc = CE + Cw + CN + Cs (IS/)

The finite difference equations for g* and () obtained in this manner were solved,
by the extrapolated Jacobi scheme. This iterative scheme is based on a double
cyclic routine, which translates into a sweep of only half of the grid points at each
iteration step [20]. The numerical procedure for solving the finite difference'
equations is as follows:

1. Overlay the computational domain with a finite difference mesh.
2. Assign values of Re, Da, A, A, B, and N; initialize values for go, r/J*u; v,

and () in Eqs. (1)-(6); and set boundary conditions.
3. Calculate the new values of vorticity g* at each node by using Eq. (14) for

go.
4. Calculate the new values of stream function r/J* at each node using the

SOR method and utilizing the obtained values of g' from step 3.
5. Calculate the new values of the velocity from U = r/Jy* and v = - r/J:.
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528 P. C. HUANG AND K. VAFAI

6. Update new boundary values using the new nodal values of 1/1* and go.
7. Repeat steps 3-6, until the criterion of convergence for g* and 1/1 * is

satisfied.
8. Calculate the temperature (J from Eq. (14) for the 1/1* values obtained

from step 7 until the criterion of convergence for (J is satisfied.

Here, the following convergence criterion is used in these iterative proce­
dures:

max
n+l n

'Pj.j - ({Jj.j

«, < 10-6 (16)

where ({J stands for g*, 1/1 *, or (J and n denotes the iteration number.
In the present numerical calculation of coupled elliptic governing equations

with an extended computational boundary condition downstream of the channel, as
explained previously, it is necessary to artificially specify the exit boundary location.
The suitable location was chosen by trial and error to ensure that the recirculation
zone was inside of the computational domain. Therefore, by choosing an extended
computational domain, it was ensured that the computational outflow boundary
condition had no effect on the physical domain solution.

A nonuniform mesh system with very fine grid spacing in regions of steep
gradients, such as those close to the wall, corners, and blocks, was selected to
obtain accurate vorticity, streamline, and isotherm distributions. We employed a
proper combination of ~x and ~y to assure stability. This was done by a
systematic decrease in the grid size until further refinement of the grid size showed
no more than a 1% difference in the convergent result. The choice of 105 grid
points in the y direction and 250 points in the x direction was found to provide
grid independence for most of our results.

In order to obtain the vorticity at the wall, the assumption of the linear
variation of vorticity from the wall to the neighboring point was used [16], that is,

i: * = _ ( 3( I/In~ - 1/1;) + gn~)
~p ~y2 2

np

where p denotes the boundary node and ~Ynp is the spatial interval in the direction
normal to the boundary. The vorticity at sharp corners requires special considera­
tion. Here, average treatment for the evaluation of vorticity suggested byGreenspan
[21] was applied to model the mathematical limit of a sharp corner as appropriately
as possible.

To ensure the continuity of the diffusive and convective fluxes across the
porous/fluid interface, the harmonic mean formulation suggested by Patankar [22]
was employed to handle the abrupt changes in thermophysical properties, such as
the permeability and thermal conductivity, across the interface. All of these effects
on the interface are summarized in the nondimensional parameters Da, A., and Pro
For the present case, Da, A., and Pr at the interface of a control volume are as
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HEAT TRANSFER AUGMENTATION IN A CHANNEL 529

(17)

Therefore, instead of the source terms in Eqs. (4) and (6), the following parameters
were used across the interface: In the fluid side of the interface,

u" a ( 1) v" a ( 1) aA aAS" = --- -- - --- -- + 1v"lu"-- -1v"lv"--
Re ay" Da. Re ax" Da ay" ax"

and in the porous side of the interface,

1 (alv"1 alv"l)S" = - __ go - AIv"IC - A v"-- - u"--
ReDa ax" ay"

(18a)

+~ .i: (_1_) _~ _a_(_1_) + Iv"lu" aA -lv"lv" aA (18b)
Re ay" Da Re ax" Da ay" ay"

In addition, to accommodate the solution of the transport equations in both the
fluid and porous regions, the effective viscosity of the fluid-saturated porous
medium is set to be equal to the viscosity of fluid. It has been found that this
approximation provides good agreement with experimental data [23, 24). Note that
at any time, constant values of Da and A for a specified porous substrate were
used.

The mathematical model and the numerical scheme were checked by compar­
ing the results obtained from the present numerical results with other relevant
limiting cases available in the literature. The relevant studies for our case corre­
spond to the problem of hydrodynamically fully developed forced convection in a
channel partially filled with a porous medium on the wall [131, and external forced
convection over a flat plate embedded in a porous medium (i.e., H" --> 00 and
W * --> 00, representing the full porous medium case [12]. The result of these
comparisons (being similar to those presented by Vafai and Kim [17]) showed that
the numerical model predicts quite accurately the velocity and temperature fields
in a porous/fluid composite system.

RESULTS AND DISCUSSION

The fixed input parameters that were used in all the simulations were R = 1,
I] = 13, and kerr/k r = 1.0. To demonstrate the flow and temperature fields, only
the portion concentrating on the porous/fluid region and its close vicinity is
presented. Furthermore, for the sake of brevity, only the main features and
characteristics of some of the results are discussed, and the corresponding figures
are not presented. However, it should be noted that the computational domain
includes a larger region than what is displayed in the subsequent figures.
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Figure 2. (a) Streamlines, (b) isotherms, and (c) local Nusselt number distribution for flow in a parallel
plate channel with alternate·porous cavity-block obstacles on the bottom plate for Re = 750, Da = 3 X
10-', II = 0.35, Pr = 0.7, k,fflk( = 1.0 A = 4, B = 1, H' = 0.25.
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HEAT TRANSFER AUGMENTATION IN A CHANNEL 531

The effects of the porous cavity-block obstacles on the flow and temperature
fields are illustrated in Figure 2 for a typical case. For the case shown in Figure 2,
Re = 750, Da = 3 X 10-5

, the inertia parameter is 0.7, the dimensionless height
and width of the porous cavity and block are 0.25 and 1.0, respectively, and the
spacing between the porous cavities and the blocks is 1. It can be seen from Figure
2a that the presence of porous cavity-block obstacles causes the flow to bend
significantly and to detach from the wall surface, forming a recirculation region
behind each porous block. Small eddies are generated on the smooth upper plate
surface corresponding to the reattached region on the bottom plate. However, even
though the local behavior of flow adjacent to the porous cavity-block obstacles is
affected by the existence of porous obstacles, flow somewhat downstream of the
porous obstacles is not influenced at all. Here, the mechanism for the formation of
recirculation regions in the rear part of the porous block is due to the relatively
larger resistance that the flow encounters inside the porous block, which in tum
displaces the flow by inducing a blowing effect from the porous region into the
fluid region. Shortly after the porous block, the blowing effect disappears. Instead,
the longitudinal pressure gradient, caused by the pressure drop behind the porous
block, creates a suction effect that moves the flow downward to the space between
the porous blocks. The flow patterns, including the shape of the recirculation zone,
and the interactions between vortex flow inside the cavities and the external
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Figure 3. Effects of Reynolds number on streamlines for flow in a parallel plate channel with alternate
porous cavity-block obstacles on the bottom plate for Da = 3 X 10-5 , A ~ 0.35, A = 4, B = 1,
H' = 0.25.
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532 P. C. HUANG AND K. VAFAI

circulating flow playa significant role in affecting the temperature field. Figure 2b
shows the isotherms corresponding to the above flow field.

It can be seen that the thickness of both the upper and lower thermal
boundary layers increases along the length of the heated plates. These thermal
boundary layers become considerably distorted around the porous obstacle regions.
Shortly downstream of the porous cavity-block obstacles, the symmetrical charac­
ter of the temperature field recurs. It should be noted that compared with the case
without porous blocks in the channel, both upper and lower thermal boundary
layers meet earlier due to the presence of porous blocks, which, as explained
earlier, pushes the flow near the bottom plate upward.

The variation of local Nusselt number corresponding to the flow field shown
in Figure 20 is depicted in Figure 2c. It should be noted that the case without the
porous medium is for the channel that still includes the empty cavities. This way,
the effects of the porous medium in enhancing the heat transfer from empty
cavities is also illustrated in this work. In general, an empty cavity creates a close
vortex region and reduces the heat transfer rate from the heated wall (the trough
at point a in Figure Zc), while a porous block produces recirculating flow, which
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_••- with porous media
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2: Re=l000
3: Re=1500
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Figure 4. Effects of Reynolds number on local Nusselt number distribution for flow in a
parallel plate channel with alternate porous cavity-block obstacles on the bottom plate
for Da = 3 X 10-', A = 0.35, Pr = 0.7, k,,,/k,, = 1.0, A = 4, B = I, H' = 0.25.
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HEAT TRANSFER AUGMENTATION IN A CHANNEL 533

improves fluid mixing, resulting in a heat transfer augmentation (the peak at point
O. In addition, the interaction between the circulation behind the porous blocks
and the vortex inside the porous cavities can result in another heat transfer
augmentation (the peak at point g). Similarly, other fluctuations in the Nu
distribution are the result of various separations and reattachments occurring
around the porous cavity-block region.

Effects of the Reynolds number. Figures 3 and 4 show the effect of the
Reynolds number on the flow and temperature fields for Da = 3 X 1O-S, A = 0.35,
Pr = 0.7, A = 4, B = 1, and N = 3, for Re = 750, 1000, and 1500. Comparison of
the streamlines in Figure 3 shows that, as Re increases, the relative strength of the
recirculation zone decreases while its lateral size increases. The recirculation zone
thus occupies the whole interblock spacing, which reduces the interaction between
the vortex inside the cavity and the closest recirculation zone. The reason for this
trend is that increasing Re increases the fluid's momentum, resulting in a larger
penetration into the porous blocks. This, in turn, increases the required length
before reattachment occurs. Comparison of the isotherms indicates that as Re
increases, the isotherms in the channel region become less distorted. Also as a
result of the above-described flow field, the thermal penetration into each of the
cavities that are followed by a porous block is reduced.

The variation of local Nusselt number for various Re is displayed in Figure 4.
Again, it should be noted that the case without the porous medium is for the
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Figure 5. Effects of Darcy number on streamlines for flow in a parallel plate channel with alternate
porous cavity-block obstacles on the bollom plate for Re = 750, A ~ 0.35, A = 4, B = I, H O = 0.25.
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Figure 6. Effects of Darcy number on local Nusselt number distribution for flow in a
parallel plate channel with alternate porous cavity-block obstacles on the bottom plate
for Re = 750, A = 0.35, Pr = 0.7, korr/k rr = 0.1, A = 4, B = I, H* = 0.25.

channel that still includes the empty cavities. As expected, when the Re grows from
750 to 1000, both peak and trough values of Nux increase. However, as Re
increases further to 1500, the results for both peak and trough values of Nu x are
significantly reduced. The reason for this is that as Re increases to 1500, the
circulation zone occupies the whole interblock spacing, which completely separates
the core flow from the heated wall, thus reducing the convective heat transfer rate
from the wall.

Effects of the Darcy number. The Darcy number, Da = K/R 2
, is directly

related to the permeability of the porous medium. The effect of Da shown in
Figures 5 and 6 for Re = 750, A = 0.35, Pr = 0.7, A = 4, B = 1, and N = 3, for
Da = 3 X 10- 5, 5 X 10- 5 and 9 X 10- 5, respectively. It can be seen from Figure 5
that as Da increases, the distortion of streamlines becomes less significant and the
height of recirculation behind the porous blocks becomes smaller. The interaction
between the vortex inside the cavity and the external flow is found to depend on
whether the recirculation zone occupies the whole interblock spacing or not. Note
that the vortex inside the first cavity is relatively unaffected by the flow outside the
cavity. As expected, the distortion of isotherms in the channel region correspond­
ing to the flow field becomes less noticeable with an increase in Da.
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HEAT TRANSFER AUGMENTATION IN A CHANNEL 535

The effect of Da on the local Nusselt number distribution is shown in Figure
6. It can be seen that Da has a significant impact on the variation of Nux' The peak
of each cycle in the local Nusselt number distribution lowers and moves to the
right as Da increases. This is because for the larger Da the accelerated fluid
penetrates deeper into the porous block. Comparison of local Nusselt number
distribution between the channel with and without porous media shows that for the
range of Da investigated (3 X 10-5 to 9 X 10- 5) , the heat transfer augmentation
increases as Da decreases.

Inertial effects. When Re based on the pore diameter of the porous
medium is large, the inertial effects become significant. Figures 7 and 8 illustrate
the effect of the inertial parameter on the flow field and heat transfer for
Re = 1500, Da = 3 X 10-5, Pr = 0.7, A = 4, and B = 1 for A = 0.35, 21, and 35.
It can be seen that the strength of the recirculation zone increases as the inertial
number increases. Furthermore, for larger inertial numbers the interaction be­
tween the vortex inside the interblock cavity and the core flow increases. This is
due to the larger bulk frictional resistance that the flow inside the porous block will
experience for larger inertial numbers. Therefore, larger values of A would lead to
a larger blowing effect, which increases the distortion in the streamlines and
reduces the penetrating extent of the flow into the porous block. As a direct result
of the discussed flow field (Figure 7), the larger the value of A, the more
noticeable the distortion of the isotherms. As can be seen in Figure 8, for the

..,
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Figure 7. Influence of the inertial parameter on streamlines for flow in a parallel plate channel with
alternate porous cavity-block obstacles on the bottom plate for Re = 1500, Da ~ 3 X 10-5, A = 4,
B = I, H' ~ 0.25.
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Figure 8. Influence of the inertial parameter on local Nusselt number distribution for
flow in a parallel plate channel with alternate porous cavity-block obstacles on the
bottom plate for Re = 1500, Da = 3 X 10-', Pr = 0.7, k",/k, = l.O, A = 4, B = I,
H'= 0.25.

increase in A, the heat transfer augmentation caused by the porous blocks
increases.

Prandtl number effects. The Pr effects are shown in Figure 9 for three
different Pr for fixed values of Re = 750, Da = 3 x 10-5, A = 0.35, A = 4, and
B = 1. These values for Pr-0.7 (air), 7.0 (water), and 100 (typical value for
oiD-are chosen such that they will cover a wide range of thermophysical proper­
ties. Obviously, the variations of Pr have no effect on the flow field, since the
values of Re, Da, and A are fixed, It was found that increasing Pr in the same flow
field decreases the thickness of the thermal boundary layer in the core flow and
increases the extent of thermal penetration into the cavity. Due to the lower value
of the thermal diffusivity, the temperature gradient is larger for larger Pro As
expected, both peak and trough values of Nux increase with an increase of the Pr
(Figure 9).

Effect of the geometry of the porous cavity -blocks. The geometric
parameters A and B reflect the influence of the aspect ratio of the porous cavity
or the block and the interspace between porous cavity and block. The effect of
changing the height of the porous block on the flow and temperature fields is
depicted in Figure 10. The streamlines for Re = 750, Da = 3 X 10-5

, A = 0.35,
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HEAT TRANSFER AUGMENTATION IN A CHANNEL 537

and Pr = 0.7, and for different heights of the porous blocks and different porous­
block interspacing are shown in Figure 10. It can be seen that the streamlines get
less distorted as the height of the porous block is decreased. In addition, the
strength and size of the recirculation regions behind the porous block are lessened
significantly for smaller block heights. Also, for smaller porous-block heights the
influence of the external core flow on the vortex inside each cavity is diminished,
which reduces the thermal penetration into the porous cavity. This is due to the
considerable decrease of the blowing effect caused by shorter porous blocks.

Comparison of streamlines in Figure 10 shows that the porous block-cavity
interaction decreases as the spacing between the porous block and cavity increases
from B = 1 to B = 2, in which each porous cavity is occupied by a closed vortex.
This is a direct result of the increase in the space between the porous block and
cavity. The closed vortex inside the cavities leads to a decreased thermal penetra­
tion into the porous cavity. Finally, it was also shown that increasing the number of
porous cavity-block obstacles had no effect on the flow and heat transfer charac­
teristics that were presented in this work.

,,,
'-2 _

- without porous media j\./ 3" --....:\
b~t with the empty cavities ,~"", I ~ , I

--- with porous media I , I I ' I

1· Pr=O 7 I I I I I. -. , I' I,
2:Pr=7 ': ': I,
3: Pr=100 I I I I I I I': I

I I , ,,' I II '
: I \ It: I II: I
I ' \ 'I I I I " I I.
I I ~ II, I I It I I
I I ~ "1 I~~~ ,I ffiil", 21,.~

,I I "" .11'1', '
I I I, I,' ''J I '1,1 '
I :~, I, I I' : ~ ,I I ,I : ~ I

• , I 1 I" I. I II. ,I., \
" I I II' I" I" 1
Ill' I I.f 'I I ,I I" 1 ,,I': h' I,: Illlll:: ,
Ill: I (III II: ,I III: ,

1I1:11~1"lt~~: "
1111 t ": (": \
'II: I •~ \' 1 ~ I \: I \

I ,,,, t ': e h : \
I I II' I" " I,. I: I \

, I .: t ~ ': r: =': ~ \
III l' I " ,I I I I." • \
'I I: : ': I : 'I I I " ... 3
I' II I 1 I, I ~ .....

I I:: f' \

150

140

130

120

110

100

90

80
Nu~

70

60

50

40

30

20

10

o
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 38

•;c

Figure 9. Prandtl number effects on local Nusselt number distribution for flow in a
parallel plate channel with alternate porous cavity-block obstacles on the bottom plate
for Re = 750, Da = 3 X 10-5

, A = 0.35, k,nlk, ~ 1.0, A ~ 4, B ~ I, H' = 0.25.
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Figure to. Influence of the geometric parameters A and B on streamline for flow in a parallel plate
channel with alternate porous cavity-blockobstacles on the bottom plate for Re = 750, Da = 3 X 10- 5

,

/I. = 0.35, Pr = 0.7, k,rr/k, = 1.0, B = I, H = 0.25.

CONCLUSIONS

An investigation of flow and heat transfer in a constant-temperature parallel
plate channel with alternate porous cavity and block obstacles on the bottom plate
is presented in this work. The analysis for the fluid-saturated porous region is
characterized by the Brinkman-Forchheimer-extended Darcy model. The rectangu­
lar porous cavities and blocks change the incoming parabolic velocity field signifi­
cantly, resulting in vortices between the blocks and cavities. It is shown that the
porous medium provides a penetrating random structure, which augments the
mixing in the fluid and profoundly changes the heat transfer characteristics within
the channel. The dependence of flow and temperature characteristics on the
governing parameters, such as the Darcy number, the Reynolds number, inertia
parameter, the Prandtl number, and two geometric parameters, is documented.
The results of this investigation show that the interactions between the vortices
residing inside the cavities and the vortices after the porous blocks have a
significant effect on the flow and thermal characteristics of the channel.
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